

UNIDAD CONSTRUCTIVA

CUBIERTAS INCLINADAS: ASPECTOS GENERALES

DESCRIPCIÓN

Sistemas para la cobertura de edificios mediante la disposición de elementos que configuran una formación de pendientes de importante inclinación sobre la que se dispone normalmente un tejado realizado con piezas individuales o placas y perfiles.

DAÑO

FILTRACIONES, HUMEDADES Y FISURACIONES

ZONAS AFECTADAS DAÑADAS

Estancias inferiores, hastiales y la propia cubierta

Fig. 1: Extendido de capa de mortero sobre tablero cerámico

Fig. 2: Proceso de ejecución de un faldón con piezas de pizarra

PROBLEMÁTICAS HABITUALES

Las cubiertas son uno de los capítulos de obra potencialmente más problemáticos, lo que conlleva a que en él se den uno de los mayores grupos de patologías que suelen producir en edificación, acompañado en muchos casos de las reclamaciones de los usuarios debido a las deficiencias que se dan en las mismas.

Hay que decir no obstante, que el tipo de cubiertas que menos incidencias tiene, es el de las cubiertas inclinadas (≈30% de los casos), dado que es en las cubiertas planas donde se concentran el mayor número de problemáticas y deficiencias. Aun así, conforman el 5º elemento constructivo donde se da el mayor número de patologías después de las fachadas revestidas, cubiertas planas, muros y fachadas de ladrillo cara vista.

Las problemáticas más habituales dentro de las cubiertas inclinadas van a depender de las variantes constructivas en cuestión, y por lo tanto de la naturaleza del elemento que constituya la formación de pendientes y del elemento de cobertura en sí (tejas cerámicas o de hormigón, lajas de pizarra, escamas metálicas, tégolas, placas...); esto es, del formato de cubierta inclinada que tengamos:

	Unidad de cobertura	Modalidad		Material	Variantes	
FORMATOS DE CUBIERTAS INCLINADAS	PLACAS Y PERFILES	Modo de clasificación:	Según geometría y configuración	aleaciones ligeras	Distintes salusianes según	
				cinc	Distintas soluciones según	
				cobre	encuentro entre planchas (engatillados, solapados, plegados)	
				galvanizados		
				plomo	picgados)	
			Según el número de capas de la cobertura		Ondulado	
				chapa simple	Grecado	
					Nervado	
				panel compuesto (sándwich)	Diversos según patente	
	PIEZAS INDIVIDUALES	Tejas		cerámicas o de hormigón	Diferentes soluciones según	
		Lajas		pizarra	tipo de recibido, fijación y	
		Escamas		metálicas o sintéticas	tipología de las piezas	
	OTROS	a)	cubiertas sin tejado [co	on impermeabilizaciones] ; b) por combinación de los anteriores		

Tabla 1

A pesar de que la casuística -tal como se ve- es diversa, normalmente el concepto por el cual pueden dar problemas las cubiertas inclinadas suele responder a una serie de aspectos análogos entre sí, como puedan ser:

- -Pendiente inadecuada o insuficiente de los paños de cubierta.
- -Encuentro mal resuelto entre el paño de cubierta y el canalón.
- -Canalón con poca pendiente o con poca entrega bajo los faldones de la cubierta.
- -Deficiente resolución de la embocadura del canalón con la bajante de pluviales.
- -Dimensiones de los canalones insuficientes para la zona pluviométrica donde se encuentra.
- -Fallos entre la formación de pendientes y los paramentos verticales anexos.
- -Resolución del encuentro con "shunts" y chimeneas de manera incorrecta.
- -Insuficiente solape entre los elementos que conforman la cobertura (ya sean piezas individuales o placas y perfiles).
- -Etc.

LESIONES Y DEFICIENCIAS

Normalmente la gran problemática de esta unidad de obra es la entrada de agua, debido a un mal diseño o ejecución de la cubierta, especialmente en lo referido a los encuentros con puntos singulares (juntas de dilatación estructural, canalones, hastiales, chimeneas, conductos de instalaciones, etc....). En este sentido suelen darse las siguientes situaciones:

Estos daños o lesiones proceden de unos **tipos de causas** que podríamos resumir en la siguiente relación que indicamos:

- -Incorrecta disposición de los elementos de cobertura.
- -Deficiente puesta en obra de los elementos singulares.
- -Movimientos dilatacionales (estructurales y propios de la cubierta).
- -Disposición del aislamiento térmico: carencias o deficiencias en el mismo.
- -Pendiente insuficiente o mal resuelta.
- -lnadecuada disposición de elementos (láminas, piezas especiales....).
- -Ausencia o deficiencias en los sellados.
- -Carencia o inadecuada ventilación de la cámara bajo cubierta.

RECOMENDACIONES TÉCNICO-CONSTRUCTIVAS

En la realización de las cubiertas inclinadas es necesario tener en cuenta una serie de parámetros que veremos a continuación. Además de ellos, los puntos singulares son de vital importancia que se resuelvan adecuadamente para que el resultado sea satisfactorio y estanco.

Formación de pendientes y materiales de cobertura

Para todo tipo de cubiertas inclinadas (independientemente de su modalidad o variante) existirá un único grado de impermeabilidad, por lo que siempre que se cumplan las condiciones indicadas en el CTE/DB-HS-1, cualquier solución constructiva que alcance dicho grado será "válida normativamente". No obstante, el solape (tanto transversal como longitudinal) del material de cobertura deberá establecerse de acuerdo a su tipología, a la pendiente del faldón y a otros factores relacionados con la ubicación de la cubierta, tales como zona eólica, tormentas y altitud topográfica [consultar las F.C.T. del sistema a utilizar y bibliografía especializada]. Además de esta ubicación, deben considerarse durante el diseño las características locales del emplazamiento del edificio: situación protegida, normal o expuesta.

Cuando la base estructural de la cubierta no disponga de la inclinación necesaria deberá establecerse una formación de pendientes. Este conjunto de pendientes deberá tener una cohesión y estabilidad suficientes frente a las solicitaciones mecánicas y térmicas, y su constitución debe ser adecuada para el recibido o fijación del resto de componentes. La formación de pendientes contará con un sistema de evacuación de aguas (constituido -en su caso- por canalones, limahoyas, rebosaderos, gárgolas y/o desagües), cuyos elementos estén dimensionados según el cálculo descrito en CTE/DB-HS-5.

La normativa establece que la horquilla de pendientes para las cubiertas inclinadas debe estar como mínimo entre el 5 y 60%, según la modalidad constructiva que tengamos.

El sistema de formación de pendientes de las cubiertas inclinadas deberá disponer de una capa de impermeabilización cuando su porcentaje de inclinación no tenga la pendiente mínima exigida en la tabla que exponemos en la página siguiente, o cuando el solape entre las piezas de la cobertura sea insuficiente.

Cuando la formación de pendientes se haga con fábrica cerámica, ésta debe configurarse con espacios libres para permitir la ventilación interior (tabiquillos aligerados con alturas \leq 4m). Se aconseja que la última hilada de los tabiquillos se haga con los ladrillos dispuestos de forma continua y en paralelo a la línea de máxima pendiente {ver fig. 8 del documento Qi-2}. Cuando la altura de la cumbrera tenga más de \approx 2,5m es deseable hacer un arriostramiento trasversal de dichos tabiquillos, ejecutando otros perpendicularmente.

Cuando el elemento de apoyo del tejado se realice con piezas cerámicas (normalmente rasillones de 1m de longitud) es conveniente proceder a la humectación previa del mismo, así como al riego posterior del mortero de cemento que conforme la capa de compresión (de 4cm de espesor y maestreado), dentro de la cual es aconsejable la colocación de una malla metálica electrosoldada (mallazo) para evitar la fisuración. El apoyo de los rasillones sobre los tabiquillos aligerados será al menos 2,5cm.

En los tejados, deberá recibirse o fijarse al soporte una cantidad de unidades de cobertura suficiente para garantizar su estabilidad dependiendo de la pendiente de la cubierta, la altura máxima del faldón, el tipo de material de cobertura y del solape de éste, así como de la ubicación geográfica del edificio.

No será necesaria la colocación de un tejado cuando la cubierta disponga de una capa de impermeabilización y ésta sea de tipo autoprotegida. Tanto en este caso como en el de los tejados, el material de cobertura de la cubierta deberá ser resistente a la intemperie y al envejecimiento, en función de las condiciones ambientales previstas (Iluvia, insolación, presión del viento, etc...).

		PENDIENTE	S DE LAS CUBIERTA	AS INCLIN	ADAS		
Un	idad de cobertura	Modalidad	Variantes		Subtipos	Pte. Mín	
CON TEJADO (1) (2)	Piezas individuales		Teja curva			32%	
		Tejas ⁽³⁾	Teja mixta			30%	
		[de hormigón o cerámicas]	Teja plana	monocan	30%		
		[de normigon o ceramicas]		marselles	40%		
				con enca	50%		
		Lajas y escamas	Pizarras, metálicas o sintéticas			60%	
	Placas y perfiles	Cinc y plomo Según tipo de uniones entre planchas y base del soporte				10%	
			Placas simétricas de onda grande			10%	
		Fibrocemento	Placas asimétricas	grandes		10%	
			nervadas	medias		25%	
		Sintéticos	Perfiles ondulados	grandes		10%	
				pequeños		15%	
			Perfiles grecados	grandes		5%	
			r erilles grecauos	medios		8%	
			Perfiles nervados			10%	
			Perfiles ondulados pequeños			15%	
			Perfiles grecados	grandes		5%	
		Galvanizado	o nervados	medios		8%	
			Perfiles nervados pequeño			10%	
			Paneles			5%	
		Aleaciones ligeras	Perfiles ondulados pequeños			15%	
			Perfiles nervados medios			5%	
	Cualesquiera	Modalidades anteriores cuando no se cumpla la pendiente mínima					
	Oddiosquiera	exigida y se incluya adicionalmente una capa de impermeabilización					
SIN TEJADO		Cubiertas realizadas		Láminas In situ	en rollo		
		pendiente acabada co			en tégolas o placas imper.		
		impermeabilización a	utoprotegida		S.I.L. (distintos productos)		

Tabla 2

- (1) En caso de cubiertas con varios sistemas de protección superpuestos se establece como pendiente mínima la menor de las pendientes para cada uno de los sistemas de protección.
- (2) Para los sistemas y piezas de formato especial las pendientes deben establecerse según las correspondientes especificaciones de aplicación.
- (3) Estas pendientes son para faldones <6,5m, una localización de exposición normal y una situación climática desfavorable; para condiciones diferentes a éstas, se debe tomar el valor de la pendiente mínima establecida en UNE 127.100 (Tejas de hormigón) ó UNE 136.020 (Tejas cerámicas).
- (a) En similitud a lo indicado para cubiertas de tejas, y para otra tipología de tejados, cuando el edificio esté en localizaciones expuestas se podría estudiar el aumentar ≈10% las pendientes (en función de la zona climatológica en donde se encuentre), y añadiendo otro porcentaje adicional del ≈5%, en el caso de faldones de más de 9m. Para faldones >12m habría que considerar colocar un canalón intermedio para la evacuación del agua.
- (b) En las zonas en que se prevean grandes y periódicas acumulaciones de nieve, se recomienda que las pendientes no sean inferiores al 60%.

Fijaciones y recibidos

En función del sistema constructivo específico con el que se realice el tejado, deberemos adoptar una forma u otra de sujetar los elementos de cobertura (piezas individuales ó placas y perfiles).

> Tejas: Se pueden utilizar rastreles, clavos, espumas, adhesivos, grapas o mortero de cemento (lo habitual)

En el caso de cubiertas con tejas mixtas o tejas planas deberán recibirse todas y cada una de las piezas con mortero de cemento, preferiblemente de tipo bastardo. Si la tipología es de teja curva, podemos pensar en recibir todas, o en recibirse y macizarse 1 de cada 5 hileras (paralelas a la línea de máx. pte.). Para ptes. ≥70% en tejas curvas y del ≥100% en tejas mixtas y planas, deberá haber fijación mecánica.

▶ Pizarras: Se pueden utilizar rastreles, clavos o ganchos (lo habitual)

Las fijaciones pueden ser de acero inoxidable, de acero galvanizado, cobre o cinc. El elemento de apoyo pude variar, estando conformado el plano del faldón a base de madera, tablero acabado con capa de yeso, planchas especiales de escayola, etc. Hay distintas técnicas según la geometría y el modo de solape de las piezas de pizarra y de si los encuentros con las aristas se hacen con perfilería vista u oculta.

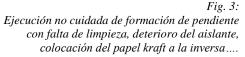
Placas y perfiles: Se utilizan fijaciones mecánicas, variando según el tipo de placa y el fabricante.

Los accesorios de fijación a la estructura portante (correas, alfajías, viguetas ...) deberán ser necesariamente no oxidables (galvanizado, acero inoxidable...). Estos elementos estarán adaptados para cada modalidad constructiva (sintéticos, de aleaciones ligeras,...) y variante utilizada (nervado, ondulado o grecado), así como diseñados y fabricados según la patente a utilizar.

Entre los tipos de accesorios de fijación más utilizados están los tornillos autorroscantes, tirafondos, ganchos en L y ganchos-grapa; todos los cuales deberían colocarse en las zonas superiores de los paneles ("crestas" de las ondulaciones o nervaduras) para asegurar mejor la estanqueidad; en cualquier caso, será necesario además disponer arandelas con juntas estancas incorporadas en cada punto de fijación.

Los bordes de los orificios y de los cortes de las placas deben realizarse por medios mecánicos que no posibiliten el daño o fisuración del material de cobertura, quedando además exentos de rebabas e imperfecciones. El diámetro de los taladros será como máximo 2mm superior al diámetro de los accesorios de fijación.

Para la determinación de las luces de los vanos y las características resistentes de las placas y perfiles a disponer, deberá tenerse en cuenta aspectos de cálculo como: el módulo resistente y el momento de inercia de las planchas, la separación entre correas, la flecha máxima admisible, etc...


Cuando los perfiles o correas apoyen sobre fábrica cerámica, es aconsejable macizar la parte de los tabiquillos en donde descansan o hacer pilastras en la zona de apoyo de cada uno ellos.

Aislamiento térmico

El material del aislante térmico debe tener una cohesión y una estabilidad suficiente para proporcionar al sistema la solidez necesaria frente a las solicitaciones mecánicas esperadas.

Cuando el aislante térmico esté en contacto con la capa de impermeabilización, ambos materiales deberán ser compatibles; en caso contrario debe disponerse una capa separadora entre ellos.

En cualquier caso, el aislante térmico deberá colocarse siempre de forma continua y estable, no debiendo verse deteriorado durante su puesta en obra debido al paso de los operarios sobre él, la caída de cascotes, vertido de mezclas, lluvia, etc...

En los casos en que la base estructural sea horizontal (p. ej.: forjados) y las formación de pendientes se haga sobre él (p. ej.: tabiquillos aligerados + tablero cerámico) el aislante es aconsejable disponerlo sobre dicha estructura. De esta manera, podremos realizar una adecuada ventilación de la cámara de aire sin que ello suponga el puenteo de la capa aislante y una pérdida de las condiciones térmicas de la cubierta. De igual modo, es deseable que el aislamiento tenga sus extremos levantados por cada uno de los laterales de las "calles" de los tabiquillos, de forma que exista un solape en vertical sobre éstos.

Barrera de vapor

En caso de ser necesaria la colocación de este elemento, éste deberá extenderse en el fondo y los laterales verticales del aislante térmico (en la cara caliente), debiendo aplicarse en unas condiciones térmicas ambientales que se encuentren dentro de los márgenes prescritos en las correspondientes especificaciones de aplicación. En el caso de que este elemento venga incorporado al aislante deberán utilizarse los elementos de unión-solape necesarios para que la barrera sea continua y eficaz.

Capa de impermeabilización

Cuando se disponga una capa de impermeabilización, ésta deberá aplicarse de acuerdo con las condiciones técnicas para cada tipo de material constitutivo *(consultar documentación especializada)*. Si dicha impermeabilización se dispone sobre pendientes comprendidas entre el 5 y el 15%, deberán utilizarse sistemas adheridos (llevados a cabo con materiales bituminosos o bituminosos modificados).

En los casos con pendientes superiores al 15% deberán utilizarse sistemas fijados mecánicamente, ya sean para impermeabilizaciones realizadas con láminas de PVC, TPO, EPDM, LO o LBM (para éstas dos últimas, se podrá optar además por un sistema de fijación mecánica + adherencia al soporte). En cualquier caso, deberán adoptarse las medidas necesarias para que la capa de impermeabilización no provoque el deslizamiento y/o fisuración de las capas que estén dispuestas superiormente a ésta.

En la aplicación de las láminas deberán tenerse en cuenta las condiciones térmicas ambientales que se encuentren dentro de los márgenes prescritos en las correspondientes fichas de características técnicas. En todo caso, cuando se interrumpieran los trabajos deben protegerse adecuadamente los materiales.

Los rollos de las láminas impermeabilizantes se colocarán siempre en la misma dirección y a cubrejuntas, así como perpendiculares a la línea de máxima pendiente. Por su parte, los solapes deben quedar a favor de la corriente de agua y no quedar alineados con los de las hileras contiguas.

Cámara de aire ventilada

Cuando se disponga una cámara de aire, ésta debe situarse en el lado exterior del aislante térmico y ventilarse mediante un conjunto de aberturas de tal forma que el cociente entre su área efectiva total, S_s (medido en cm²) y la superficie de la cubierta A_c (medida en m²) cumpla esta condición:

$$30 > \frac{S_s}{A_s} > 3$$

Al objeto de cumplir esta formulación y hacer una propuesta práctica-constructiva que satisfaga esta premisa, se podría resolver la ventilación de la siguiente manera:

- 1)-Aberturas de 6x6cm, sobre las cuales se dispondrían mallas antipájaros y antiroedores con una abertura de luz de 1x1cm.
- 2)-Durante la ejecución se asegurará que coincidan exactamente las aberturas practicadas con las piezas de ventilación que se situarán encima (replanteo previo).
- 3)-El número mínimo de aberturas será de 1 cada 9m².
- 4)-El número máximo de aberturas será de 7 cada 9m².
- 5)-Las piezas de ventilación se colocarán al tresbolillo y habrá varias cerca de aleros y cumbreras.
- 6)-Puede estudiarse la conveniencia de que los hastiales contengan también aberturas.

De igual modo, las piezas o tejas de ventilación serán preferentemente de las que sobresalen del plano de protección en lugar de las que tienen un hendido en su dorso.

Como criterio general, durante el proceso de construcción y abertura de orificios para la ventilación deberá procurarse que no caigan cascotes, rebabas de mortero y suciedad en el interior de la cámara de aire.

Podremos obviar la colocación de las piezas especiales de ventilación cuando:

- a)-La base resistente sea inclinada y se configure como elemento de apoyo directo del material de cobertura (p.ej.: cubiertas de naves con perfilería metálica, correas y paneles de aleaciones ligeras o galvanizadas).
- b)-Existe una minicámara de aire entre el material de cobertura y el tablero de la cubierta (p.ej.: tejas colocadas sobre rastreles dispuestos sobre un faldón en el que el 100% de la superficie está aireada, con entrada del aire por el alero y salida por abertura longitudinal anexa a la cumbrera).

Fig. 4: Ejemplos de piezas especiales de ventilación antiguas para cubiertas inclinadas de teja cerámica curva.

REFERENCIAS

FUNDACIÓN MUSAAT AUTOR Manuel Jesús Carretero Ayuso COLABORADOR Alberto Moreno Cansado AUTOR Calle del Jazmín, 66 28033 Madrid www.fundacionmusaat.musaat.es

IMÁGENES ● Carretero Ayuso, Manuel Jesús (Fig.: 1, 2, 3 y 4).

BIBLIOGRAFÍA y NORMATIVA

● CTE/DB-HS-1; ● NTE-QT; ● UNE 136020; ● UNE 127100

CONTROL: ISSN: 2340-7573 Data: 14/b2° Ord.: 7 Vol.: Q N°: Qi-1 Ver.: 1

<u>NOTA</u>: Los conceptos, datos y recomendaciones incluidas en este documento son de carácter orientativo y están pensados para ser ilustrativos desde el punto de vista divulgativo, fundamentados desde una perspectiva teórica, así como redactados desde la experiencia propia en procesos patológicos.

© del Autor
© de esta publicación, Fundación MUSAAT

En este documento se incluyen textos de la normativa vigente